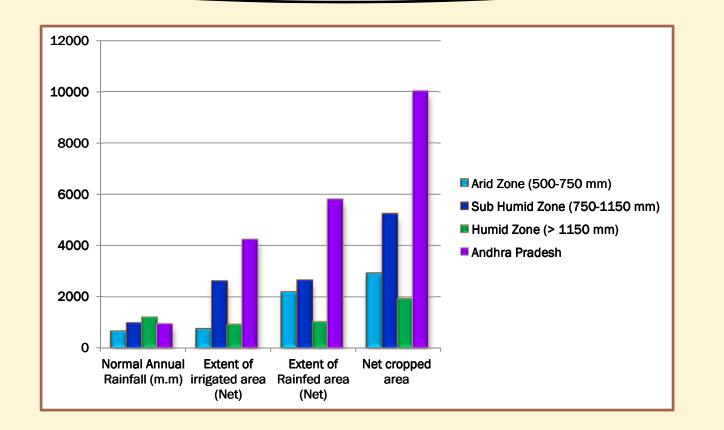
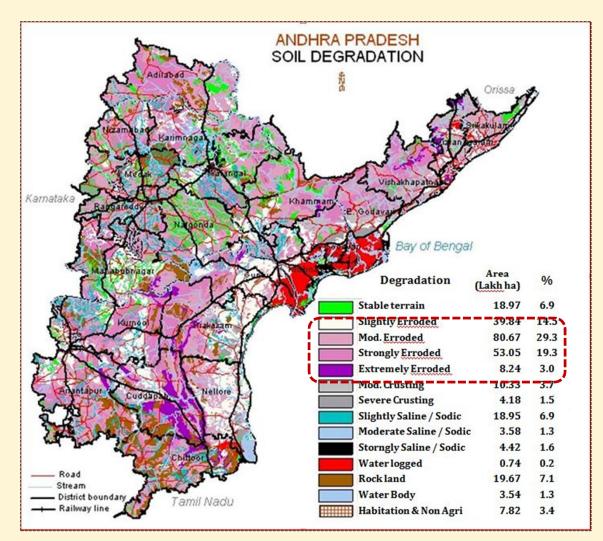


Climate Change: Strategies of Adaptation and Mitigation in Rainfed Agriculture in Relation to Water Management in Andhra Pradesh

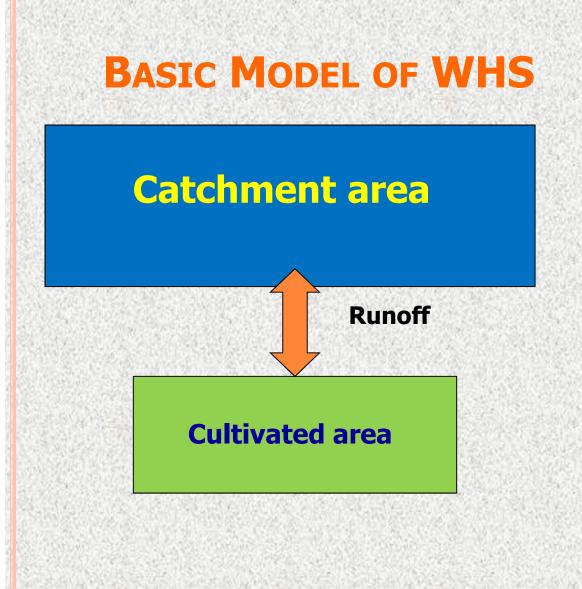

> Dr. K. SREENIVAS REDDY, FIE Principal Scientist (SWCE), CRIDA, Santhoshnagar, Hyderabad-500059 e mail: ksreddy.1963@gmail.com


PHYSICAL STATISTICS OF ANDHRA PRADESH (2010-11)

- The total geographical area : 275.04 Lakh Ha.
- **Gross Area Sown : 145.12 Lakh Ha**
- Net area sown:112.88 Lakh Ha
- Rainfed Area : 57.77 Lakh Ha
- > The Area irrigated under canals :14.45 lakh ha
- > The Area irrigated by Tubewells & Dugwells : 22.83 lakh ha
- > The Area irrigated by other source :1.53 lakh ha
- Number of Pumpsets : 29 lakhs

Distribution of Rainfed areas (1000ha) under different Rainfall Zones in Andhra Pradesh

Degradation	Area (Lakh ha)	%
Stable	18.97	6.9
Erroded	181.80	66.1
Crusted	14.51	5.2
Saline / Sodic	26.95	9.8
Others	23.95	8.6
Non Agri	7.82	3.4


ADAPTATION AND MITIGATION STRATEGIES IN RAINFED AREAS

Adaptation

- Rainwater Harvesting(In-situ & Ex-Situ)
- Ground Water Recharge
- Drought Resistant crop Varieties
- Enhancing Water Productivity through Efficient Irrigation systems
- Mitigation
- Conservation Agriculture
 - Mulching
 - Low/Minimum Tillage
 - Carbon Sequestration

Estimated potential volume of rainwater storage for small-scale water harvesting structures

Rainfall zone (mm)	Geographical area (million ha)	Rainwater availability (million ha m)	Harvestable runoff (million ha m)
<500	52.07	15.6	0.78
500-750	40-26	25.2	1.51
750-1000	65-86	57.6	4.03
1000-2500	137.24	205.9	14.61
>2500	32.57	95.7	3.26
Total	328.0	400.0	24.19

Present:

Community based

Future:

Individual land holdings

In-situ conservation of rain water:

Contour cultivation Tillage Practices- Deep Tied ridging Conservation furrows Broad bed and furrows Vertical mulching Compartmental bunding

Conservation furrows + deep tillage in sunflower. Yield benefit 25% over farmers practice

Ridges and furrows system in cotton. Additional yield of 500 kg/ha over farmers practice

In situ moisture conservation minimized drought effects across production systems : 270 on farm trials in 18 target districts

Pigeonpea in ridge and furrow system recorded 13% yield increase over flat sowing at Mirzapur, UP, India

POTENTIAL OF RAIN WATER HARVESTING AND RECYCLING AS ON ADAPTATION STRATEGY TO CLIMATE VARIABILITY/CHANGE IN RAINFED CROPS

Rainfall- Runoff events during Kharif, 2009

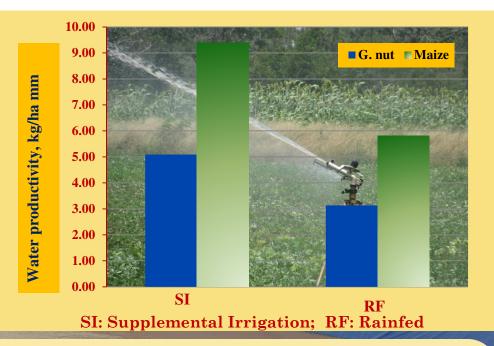
Date	Rainfall, mm	Runoff, mm	Per cent runoff to rainfall
8/06/2009	34.4	0.67	1.95
13/06/2009	14.4	0.17	1.18
20/06/2009	9.0	0.16	1.78
23/08/2009	17.4	0.88	5.06
26/08/2009	48.4	1.90	3.93
31/08/2009	96.4	10.16	10.54
29/09/2009	30.0	0.65	2.17
30/09/2009	55.0	4.32	7.85
01/10/2009	29.0	0.73	2.52
9/10/2009	50.0	0.98	1.96
19/11/2009	25.0	2.59	10.36

Rainfall- Runoff events during Kharif,2010

Date	Rainfall, mm	Runoff, mm	Per cent runoff to rainfall
11/06/2010	70.2	3.42	4.87
13/06/2010	62.0	6.37	10.27
06/07/2010	75.4	6.36	8.40
10/09/2010	29.0	0.45	1.55

Rainwater productivity:

• Adaption of a suitable pumping system


• Selection of suitable water application system based on water quality in storage structures

Average yields(kg/ha) of G.Nut & Okra and Shelling (%) and oil content (%) in G.nut in different treatments

	G.Nut	Yield,	kg/ha	G.Nut Shelling, %		G.Nut Oil, % Okra		Yield, kg/ha			
Treatments	2008	2009	2010	2008	2009	2010	2009	2010	2008	2009	2010
SI (TS)	1105	1783	3340	60	63	69	41	47	2610	3200	4095
SI (NTS)	844	1595	2853	54	56	66	46	47	2367	2663	3391
RF (TS)	633	917	3360	55	56	69	46	47	1490	1525	3941
RF (NTS)	500	845	2940	48	50	66	48	46	897	965	3008
CD (5%)	190.2	70.59	601.69	2.93	2.53	4.48	12.26	4.10	442	78.0	593.24
SE	77.72	28.85	173.87	1.20	1.04	1.293	3.54	1.185	180.50	31.86	171.43

- Capacity of farm pond ranges from 250 to 1750 m³
- Lined with HDPE(500 microns) and Silpaulin (300 gsm) plastic sheet
- Spray gun with 3 hp diesel monoblock pumpset
 (Discharge:270 lpm at 200 kPa)

Salient Observations:

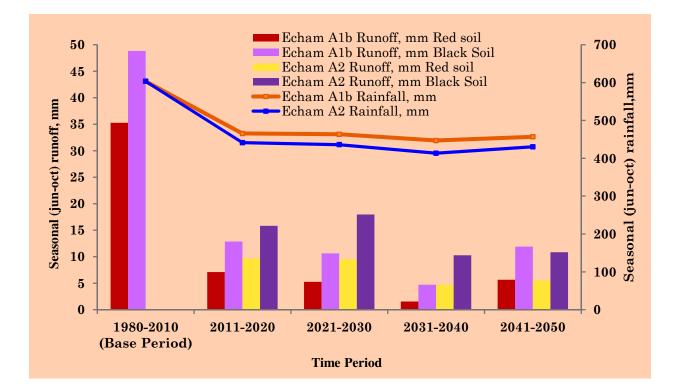
Seasonal rainfall of 350 mm was recorded(50 % deficit to normal)during 2011 with two rainfall events producing runoff of 1500 m³ in 6 farm ponds
Experiments conducted in groundnut (1.2 acres)and maize (1 acre) with 3 irrigations in groundnut and two irrigations in maize increased the water productivity by 67% over the rainfed in sandy loam and sandy clay loam soils

	Crops	Rainfall during growing	Water applied as supplemental irrigation, mm	Total water used, mm	Crop productivity, kg/ha		2
R		period, mm			SI	\mathbf{RF}	
	Ground nut(ICGV9114)	318.6	63.0	391.6	1942	1000	
5	Maize(DHM117)	319.8	59.0	378.8	3561	1862	

WATER USE PARTICULARS OF RAINFED CROPS UNDER DIFFERENT FARM PONDS AND THEIR WATER PRODUCTIVITY (2012)

Crops	Area Irrigated (Acres)	Season	Contributing Farm Ponds	Amount of water used, m ³	Yield q/ha	Water productivity (q/ha mm)
Groundnut	1.0	Kharif	R3-1&2	300	8.8	0.16
Maize	1.0	Kharif	R1	500	47.5	1.07
Carrot	0.77	Rabi	L6	417	6.0	0.06
Redgram	2.10	Rabi	R5	483	1.8	0.02
Green Gram	2.87	Summer	R5, L6	675	7.2	0.07

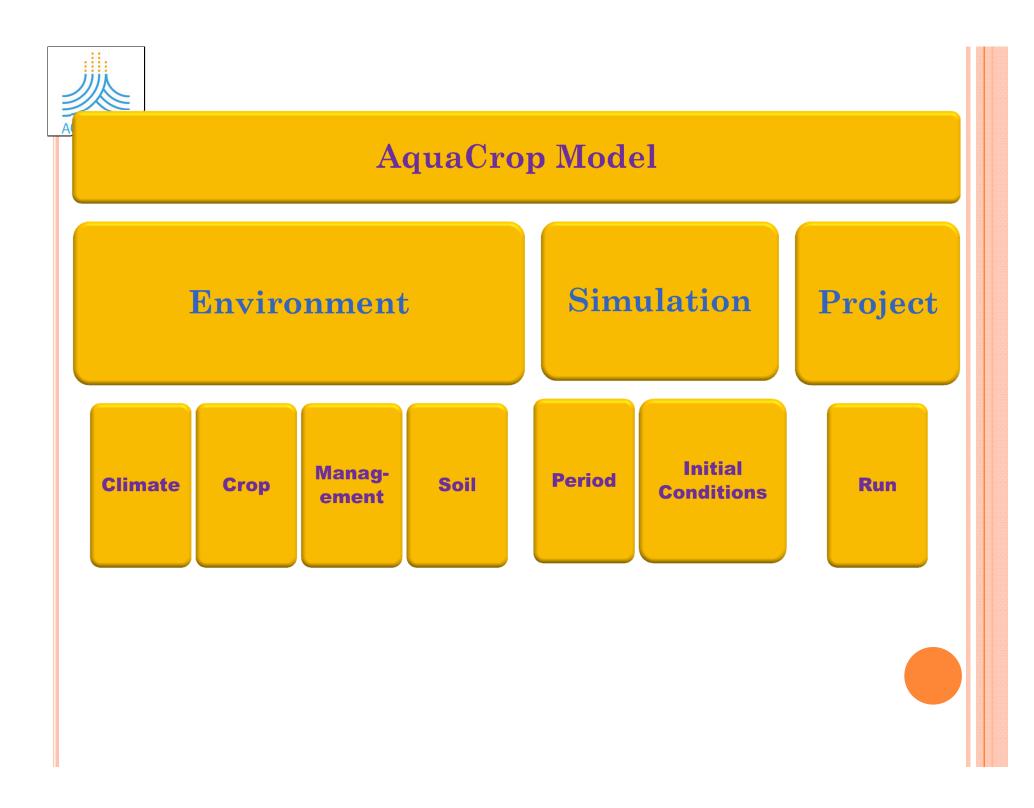
Efficient water application systems for improving productivity is crucial to agriculture



Demonstration of different micro irrigation systems in Sapota

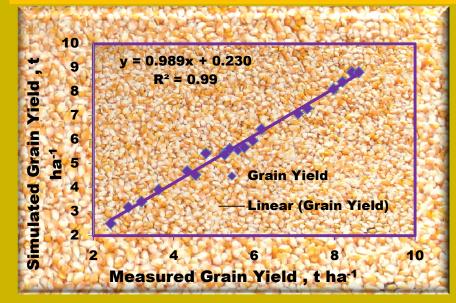
Micro water harvesting: half moon bunds in Mango across the slope

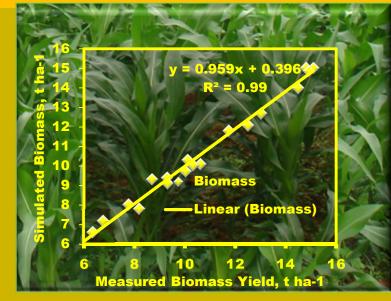
SEASONAL RAINFALL & RUNOFF (JUNE-OCTOBER) IN DIFFERENT CLIMATE CHANGE SCENARIOS FOR SOUTHERN TELANGANA

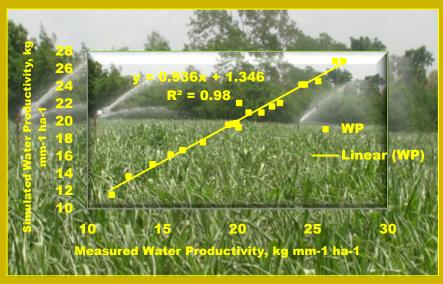


Assessment of Rain Water Productivity Through Aqua crop Model

Experimental Details

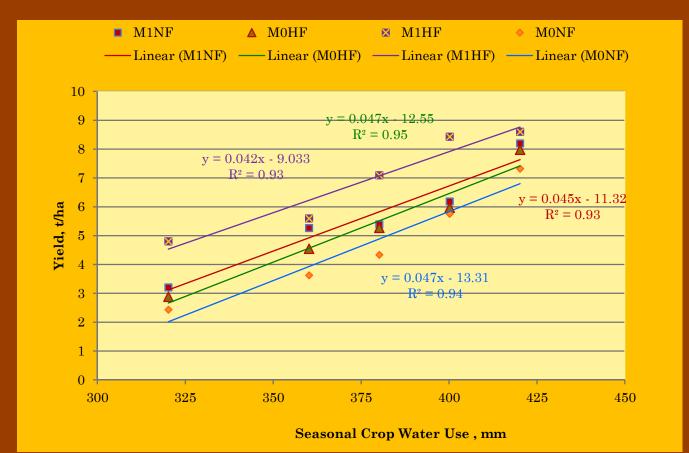

Study area Design Maize variety Total Plot size Each Plot size Total Plots	 Gunegal Research Farm, CRIDA Hyderabad Split Plot Design Monsanto, Dekalb 900 M.Gold 4050m² 15 x 4.5 m² 20
Main Treatments:	 5 irrigation Treatments (I1, I2, I3, I4 and Rainfed) – Main plots 2 Management Practices – Sub plots Mulching @ 5 t/ha, Non mulching Fertilizer doses (Normal 90kg N, 45kg P, 45kg K and 125% of Normal)
Replications	: 3
Season	: Kharif , June 21 to October 15, 2012




Observed and Calibrated input data for AquaCrop Model

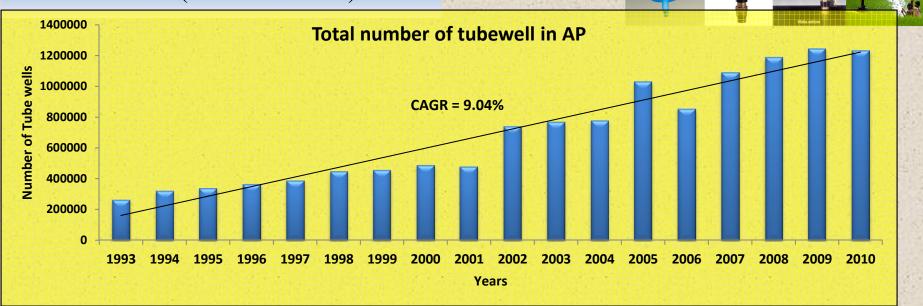
Base temp	8	°C
cut off temp	32	°C
Canopy growth coefficient (CGC)	15.5	%/day
Canopy decline coefficient (CDC) at senescence	4.2	%/day
Maximum basal crop coefficient (Kcb)	1.05	
Time from sowing to emergence	6	days
Time from sowing to start flowering	51	days
Time from sowing to start senescence		
Rainfed	68	days
20mm	71	days
30, 40,50 mm	75	days
WP	31	g/m²
Time from sowing to maturity	117	days
Length of the flowering stage	10	days
stomatal closure		
Upper	0.69	unit less
Shape factor	6	unit less
Early canopy senescence		
upper	0.69	unit less
shape factor	2.7	unit less
canopy expansion		
upper	0.14	unit less
lower	0.72	unit less
shape factor	2.9	unit less

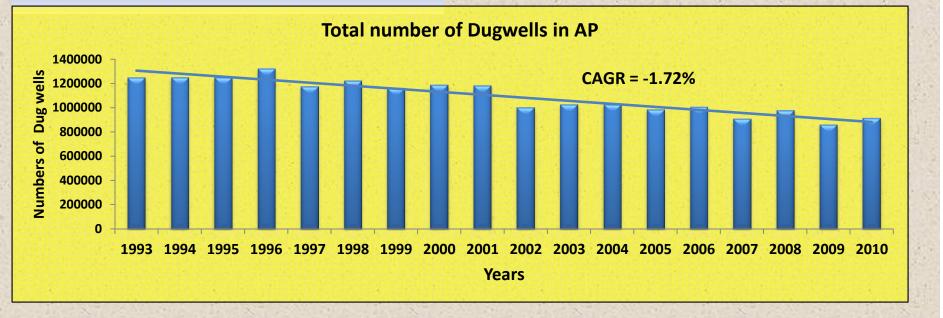
MODEL PERFORMANCE STATISTICS OF THE AQUACROP DURING CALIBRATION



Performance Statistics	Biomass, t ha ⁻¹	Yield, t ha ⁻¹	WP, kg ha ⁻¹ mm ⁻¹
E	0.99	0.98	0.98
RMSE	0.16	0.21	0.08
MAE	0.52	0.43	0.70
D-index	0.95	0.94	0.93

Crop Water Production Functions for Maize




Water, Energy and Co₂ Nexus under wells in Andhra Pradesh

Tubewells in AP (from 1993-2010)

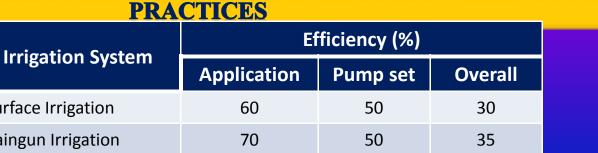
Dugwells in AP (from 1993-2010)

PUMPS DISTRIBUTION POWER WISE IN ANDHRA PRADESH

SI. no	Pump (Hp)	Working of Pumps (%)
1	3	19.85
2	5	52.81
3	7.5	9.55
4	10	9.61
5	>10	8.18

In Andhra Pradesh majority of pumpsets are 5Hp rated. However, on an average 5Hp rating was taken for calculation of Co2 emission.

SYSTEMS AND PUMPSET EFFICIENCIES FOR DIFFERENT IRRIGATION


SI. No.

1

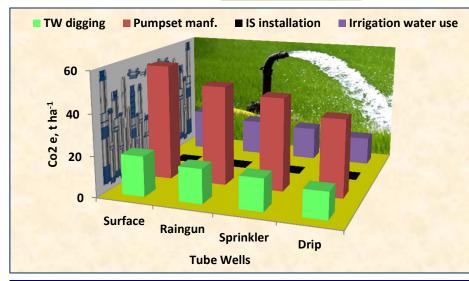
2

Surface Irrigation

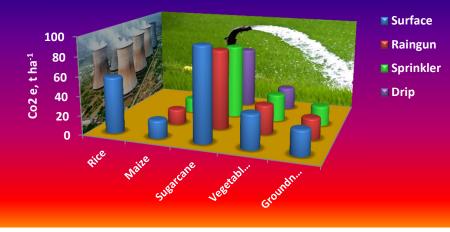
Raingun Irrigation

3	Sprinkler Irrigation	75	50	37.50
4	Drip Irrigation	90	50	45

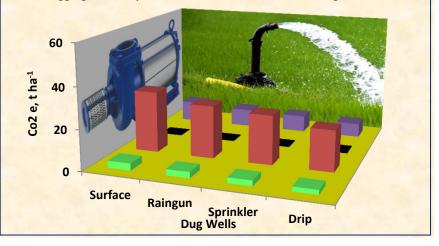
C-CONTENT AND CO₂ EMISSION RATE FROM DIFFERENT COALS


SI. No.	Coal	Co2 Emission (Kg/kg of coal)	C-Content (%)
1	Anthracite	3.49	98
2	Bituminous	2.89	65-92
3	Sub-Bituminous	2.38	45-65
4	Lignite	1.46	25-45

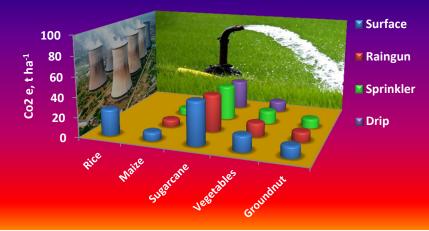
In this study sub-bituminous coal is selected which contains the Co2 emission rate 2.38 kg/kg of coal burning with 45-65 % of C-Content and it is most widely used in India and in Andhra Pradesh for producing the electricity in thermal power plants. The coal required to produce 1 kW-hr energy or electricity is 0.5 kg.


Note: R2 is the increase in pumpset efficiency by 5% after replacing the GI pipes with PVC pipes, fittings and low friction foot valve.

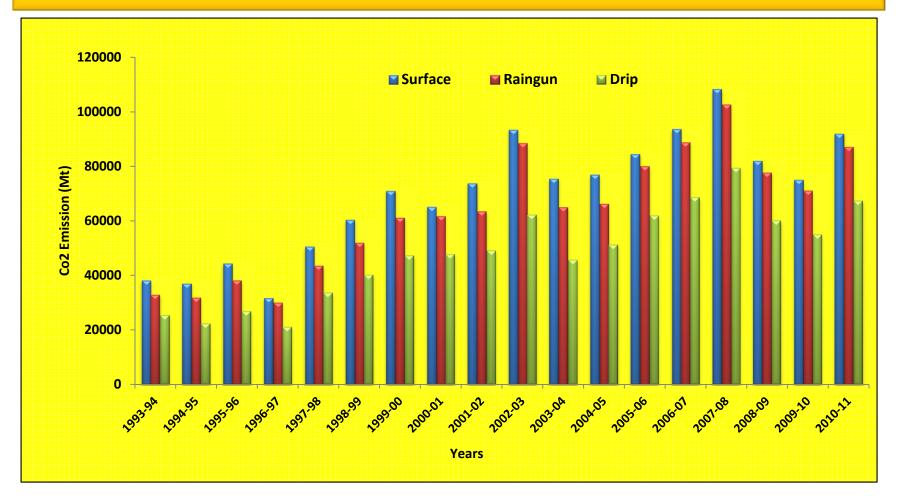
Development of Co2 foot print for well irrigation in Andra Pradesh for 5 major crops

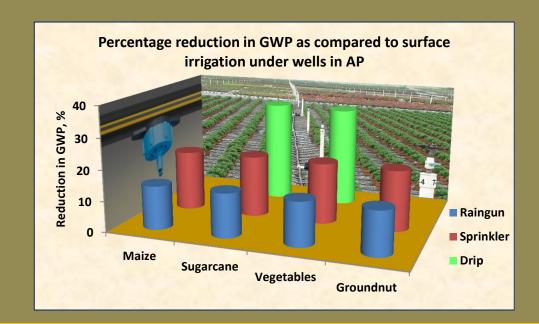


Total Co2 e (t/ha) foot print for different crops with various irrigation systems under tubewells in AP



■ DW digging ■ Pumpset manf. ■ IS installation ■ Irrigation water use

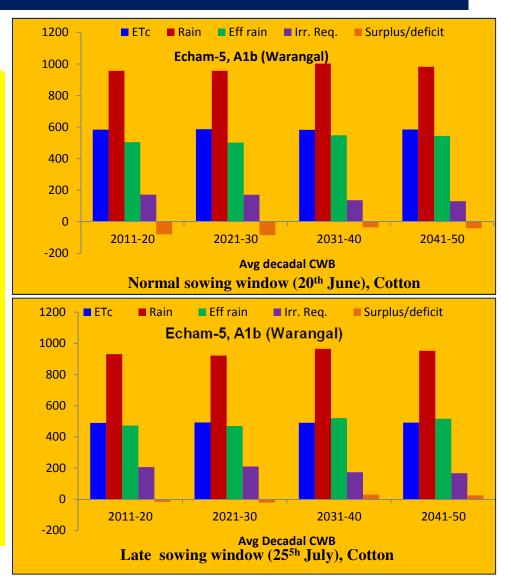




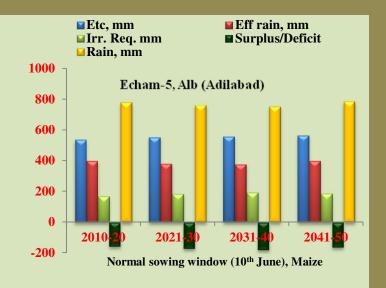
CO₂ EMISSION FOR SUGARCANE UNDER DIFFERENT IRRIGATION SYSTEMS IN AP

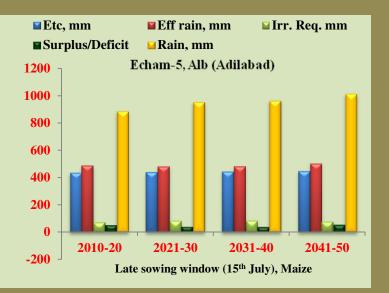
Findings:

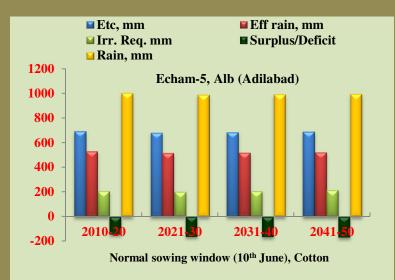
 \triangleright Out of the components considered, the contribution to Co2 emission by pump industry is maximum.

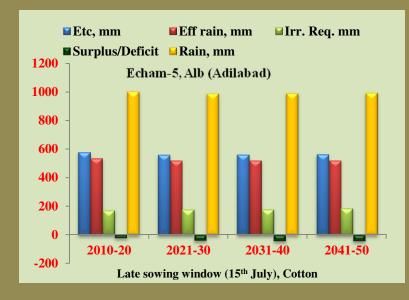

➢Drip irrigation has the advantage in maximum reduction of global warming potential as mitigation strategy as compared surface irrigation systems under wells.

Impact of climate change on crop water balance in Telangana region (Maize and Cotton)


CROPWAT model was used for calculating crop water balance components of rainfed maize and cotton in 9 districts of Telangana region for different CC scenorios of A1b and A2 of ECHAM5 and CSIRO.


Findings:


- 1. The CC scenarios predicted the shift in the rainfall pattern, reduction in crop ET, increased effective rainfall because of fall in the temperatures.
- 2. Accordingly, the deficits have been reduced in late sowing as compared to normal sowing of cotton and maize crops.



Decadal Crop Water Balance for Maize and Cotton in High Rainfall District

Drought resistant Crop varieties in Andhra Pradesh

Crop	Varieties/ Hybrids	
Oil seeds		
Ground nut	Abhaya, Navayani, ICGV-9114,	
Castor	PCH-111 , Kranti, Jyothi, Haritha, Kiran	
Sunflower	Private Hybrid	
Pulses		
Redgram	PRG-158, LRG-50,	
Greengram	LGG-460	
Blackgram	LBG-623, T-9	
Horsegram	CRIDA-18R, CRHG-4	
Chickpea	КАК-2	
Soyabean	MACH-58, PK-472	
Sorghum	CSV-23, CSH-16,25	
Bajra	ICMV-122	
FT Millet	Sri lakshmi, Narasimharaya	
Cotton	BT	

Sailent findings/Recommendations:

- Rain water harvesting systems through farm ponds has good potential of adaptation to climate risk in both kharif and rabi rainfed crops. This system has advantage of conservation of both soil, water and nutrients and promotes local water availability for agricultural operations. It can be made for multiple enterprise integrating agriculture, horticulture, fish, poultry etc.
- Aqua crop has been found effective with reliable results for assessing the rain water productivity in rainfed areas.
- The AquaCrop model was calibrated for maize under different supplemental irrigation and crop management practices. The maximum basal crop coefficient for maize varies from 0.75 to 1.05 and water productivity of 31 gm⁻²
- AquaCrop model predicted well with the measured values in case of grain yield, biomass, WP, crop canopy and soil water content. The model efficiency varied from 0.98 to 0.99 for grain yield, biomass and water productivity.
- Under well irrigation, CO2 foot print was found minimum with drip irrigation system as compared to other surface, raingun and sprinkler.
- The crop water balance for both maize and cotton with Echam-5 & CSIRO models climate data indicated the reduction in the deficits because of shift in rainfall, reduced Crop ET in case of late sowing of the crops for Telanagana region.
- While introducing the new technologies as a strategy to mitigate the climate change, both investments and incentives for the farmer must be considered for protecting the future agri environment

